
International Journal of Computational Engineering Research||Vol, 03||Issue, 8||

||Issn 2250-3005 || ||August||2013|| Page 43

Protecting Frequent Item sets Disclosure in Data Sets and

Preserving Item Sets Mining

1,
 Shaik Mahammad Rafi.

2,
 M.Suman ,M.Tech

3,
 Majjari Sudhakar,M.Tech

4,
 P.Ramesh

5,
 P.Venkata Ramanaiah.,M.Tech

1PG (M.Tech) Student in CSE Department, Global College of Engineering and Technology, Kadapa, YSR (D.t).
2,3,4Assistant Professors in CSE Department, MRRITS ,Udayagiri,SPSR Nellore(D.t).

5 Assistant Professor in CSE Department, GCET, Kadapa,YSR(D.t).

I. INTRODUCTION
The data mining technologies have been an important technology for discovering previously unknown

and potentially useful information from large data sets or databases. They canbe applied to various domains,

such as Web commerce, crime reconnoitering, health care, and customer's consumption analysis. Although these

are useful technologies, there is also a threat to data privacy. For example, the association rule analysis is a

powerful and popular tool for discovering relationships hidden in large data sets. Therefore, some private

information could be easily discovered by this kind of tools. The protection of the confidentiality of sensitive

information in a database becomes a critical issue to be resolved.

The relationships discovered from a database can be represented in a form of frequent itemsets or

association rules. One rule is categorized as sensitive if its disclosure risk is above some given threshold. With
an association analyzer, if an itemset with support above a given minimal support, we call the itemset as a

frequent itemset.

The problem for finding an optimal sanitization of a source database with association rule analysis has

been proven to be NP-Hard [1]. In [2,3,4,5] the authors presented different heuristic algorithms that modify

transactions via inserting or deleting items for hiding sensitive rules or itemsets.

Vassilios S. Verykios et al. [2] presented algorithms to hide sensitive association rules, but they

generate high side effects and require multiple database scans. Instead of hiding sensitive association rules,

Shyue-Liang Wang [3] proposed algorithms to hide sensitive items. The algorithm needs less number of

database scans but the side effects generated is higher. Ali Amiri [4] also presented heuristic algorithms to hide

sensitive items. Finally, Yi-Hung Wu et al. [5] proposed a heuristic method that could hide sensitive association

rules with limited side effects. However, it spent a lot of time on comparing and checking if the sensitive rules

are hidden and if side effects are produced. Besides, it could fail to hide some sensitive rules in some cases.

ABSTRACT:
 Based on the network and data mining techniques, the protection of the confidentiality of

sensitive information in a database becomes a critical issue to be resolved. Association analysis is a

powerful and popular tool for discovering relationships hidden in large data sets. The relationships

can be represented in a form of frequent itemsets or association rules. One rule is categorized as

sensitive if its disclosure risk is above some given threshold. Privacy-preserving data mining is an

important issue which can be applied to various domains, such as Web commerce, crime
reconnoitering, health care, and customer's consumption analysis.

The main approach to hide sensitive frequent itemsets is to reduce the support of each given

sensitive itemsets. This is done by modifying transactions or items in the database. However, the

modifications will generate side effects, i.e., nonsensitive frequent itemsets falsely hidden (the loss

itemsets) and spurious frequent itemsets falsely generated (the new itemsets). There is a trade-off

between sensitive frequent itemsets hidden and side effects generated. Furthermore, it should always

take huge computing time to solve the problem.

In this study, we propose a novel algorithm, FHSFI, for fast hiding sensitive frequent

itemsets (SFI). The FHSFI has achieved the following goals: 1) all SFI can be completely hidden

while without generating all frequent itemsets; 2) limited side effects are generated; 3) any minimum

support thresholds are allowed, and 4) only one database scan is required.

Protecting Frequent Itemsets Disclosure In Data Sets…

||Issn 2250-3005 || ||August||2013|| Page 44

In this study, we propose a novel algorithm, FHSFI for fast hiding sensitive frequent itemsets (SFI).

The FHSFI has achieved the following goals: 1) all SFI can be completely hidden while without generating all

frequent itemsets; 2) limited side effects are generated; 3) any minimum support thresholds are allowed, and 4)
only one database scan is required.

The remainder of this paper is organized as follows: Section 2 presents the problem formulation and

notations. In Section 3, we introduce the concept of the proposed algorithm for fast hiding sensitive frequent

itemsets and giving examples to illustrate the proposed algorithm. Section 4 is the experimental results which

present the performance and various side effects of the proposed algorithm. Section 5 is the conclusion and

further work.

II. PROBLEM FORMULATION AND NOTATIONS
In Table 1, we summarize the notations used hereafter in this paper. Let I be a set of items in a transaction

database D.

And let I = {i1, i2, ..., im}; D = {t1, t2, …, tn}, where every transaction ti is a subset of I, i.e. ti⊆I. An

example database is shown in Table 2. Let X be a set of items in I. If X⊆ti, we say that the transaction ti

supports X. There are nine items, |I|=9,be minimized.

Table 1. Definitions of variables used in this paper

 Variable Definition

 D the original database

 D‟ the released database which is transformed from D

 U the sets of frequent item sets generated from D

 U‟ the sets of frequent item sets generated from D‟

 ti a transaction in Database D

 |ti| the number of items in ti

 TID a unique identifier of each transaction

 SFI the set of sensitive frequent itemsets to be hidden

 SFI.tj a sensitive frequent itemset in the SFI

 ||．|| the support count of an itemset, i.e., the number of

 transactions that support the itemset

 wi prior weight of ti

 PWT a table for storing TID and wi for each transaction

MICi

in an order decreasing by wi

 the maximal number of itemsets in SFI that contain

 an item ik, where ik∈ ti, SFI.tj⊆ti

 SFI.t.i transaction to be modified

t

ransaction to be modified

and five transactions, |D|=5, in the database. The support of itemset X can be computed by equation (1). An

association rule is an implication of the form X→Y, where X⊂I, Y⊂I and X∩ Y= Ø. A rule X→Y will be
extracted from a database if

1) support(X∪Y) ≥ min_support (a given minimum support threshold) and

2) confidence(X ∪Y) ≥ min_confidence (a given minimum confidence threshold),

where support(X ∪Y) and confidence(X ∪Y) are given by

equations (2) and (3), .

support(X) = ||X|| / |D| (1)

support(X∪Y) = ||X∪Y|| / |D| (2)

confidence(X∪Y) = ||X∪Y|| / | X | (3)

Table 2.

Database D

TID Transaction

1 1,2,4,5,7

Protecting Frequent Itemsets Disclosure In Data Sets…

||Issn 2250-3005 || ||August||2013|| Page 45

2 1,4,5,7

3 1,4,6,7,8

4 1,2,5,9

5 6,7,8

Table 3.Frequent Itemsets

Itemset Support

1 80%

4 60%

5 60%

7 80%

1,4 60%

1,5 60%

1,7 60%

1,4,7 60%

4,7 60%

In equation (1), ||X|| denotes the number of transactions in the database that contains the itemset X, and

|D| denotes the number of the transactions in the database D. If support(X) ≥ min_support, we call X as a

frequent itemset. Table 3 shows the frequent itemsets for a given min_support = 60%.

For the example X = {1,4,7}, since X⊆t1, X⊆t2 and X⊆ t3, we obtain ||X||=3. Therefore,

support(1,4,7)=60%. Using the form X→Y (support, confidence) for association rules, the rules generated from

the above itemset {1,4,7} can be described as 1→4,7 (60%,75%), 4→1,7 (60%,100%), 7→1,4 (60%,75%),

1,4→7 (60%,100%), 1,7→4 (60%,100%) and 4,7→1 (60%,100%).

Figure 1 shows the relationships among the sets, U, U‟, and SFI. The study goal is to hide all SFI and

to minimize the loss itemsets. That is, U‟∩SFI = Ø and the set U–U‟–SFI should be minimized.

Figure 1. The relationships among the sets, U, U‟, and SFI

III. THE PROPOSED ALGORITHM
We now demonstrate the algorithm, FHSFI. Given D, SFI, and min_support, the algorithm is to

generate a database to be released, D‟, in which the sensitive frequent itemsets are hidden and the side effects

generated are minimized.

The sketch of the FHSFI algorithm is shown in Figure 2, which can be depicted as the following stages.

Protecting Frequent Itemsets Disclosure In Data Sets…

||Issn 2250-3005 || ||August||2013|| Page 46

Stage 2 repeats to modify transitions one-by-one until all SFI have been hidden. The order of the

transaction modifications is according to the prior weight associated with a transition. The following tasks are

repeated until SFI is empty.

• Select a transaction tk from PWT such that wk is maximal.

• Select the item to be deleted, according to the heuristic shown in Figure 4, and delete it.

• Recompute wk after modifying each item, and then insert it into the PWT in the maintained order.

• Subtract 1 from ||SFI.tj|| if SFI.tj contains the deleted item and is supported by tk.

• Remove SFI.tj from SFI, if the (||SFI.tj|| / |D|)< min_support.

Figure 3. The correlation between t1 and SFI

20

If ||SFI.tj|| / |D| < min_support

then
21 Remove SFI.tj from SFI;

22 End;
23 End;

Figure 2. The pseudo code of the FHSFI algorithm

In stage 1, FHSFI scans database once while collects all useful information about the correlation with SFI

for each

Table 4.

An example of sensitive frequent itemsets, SFI

 Itemset

1 1,2,5

2 1,4,7

3 1,5,7

4 6,8

Table 5.

The support count for each itemset in SFI

 Itemset ||．||

1 1,2,5 2

2 1,4,7 3

3 1,5,7 2

4 6,8 2

transaction, including ||SFI.tj|| and wi. The ||SFI.tj|| is used for checking if SFI.tj has been hidden. The wi is a

prior weight of a transaction ti, which provides a heuristic for estimating side

effects and can be computedbyequation(4).

wi = 1 / [2(| ti | - 1) / MICi].

Table 4 shows an example of sensitive frequent itemset. Let t1 = {1,2,4,5,7}, which supports SFI.t1,

SFI.t2 and SFI.t3. As shown in Figure 3 the correlation between t1 and the SFI can be represented by a graph

G=<V,E>. Each node is for an item ik in t1; the weight associated with each edge in E denotes the number of the

itemsets in SFI that contain the both adjacent nodes connected by the edge. Each node can be represented as

({SFI.tj | SFI.tj ⊆ti, ik∈SFI.tj}, item_countSFI.t). For example, the node < {1,2,3}, 3> for item „1‟ indicates that
three itemsets in SFI that contain the item „1‟, namely the SFI.t1, SFI.t2, and SFI.t3. As shown in Figure 3, item

„1‟ has the maximum item_countSFI.t which is equal to 3. Hence, we obtain MIC1 = 3 and w1 = 3/16.

Figure 4 shows the heuristic procedure for determining which item to be modified and for computing MIC for

transaction ti.

Protecting Frequent Itemsets Disclosure In Data Sets…

||Issn 2250-3005 || ||August||2013|| Page 47

Heuristic ();
Input: TID, SFI;

Output: the item to be modified, MICi;

1 Begin
2 For each SFI.t in SFI do

3 Begin
4 If the transaction tTID fully supports SFI.tj then

5 Begin
6 For each item SFI.tj.i in SFI.tj Do

7 item_countSFI.t.i = item_countSFI.t.i + 1;

8 End;

9 End;

10 Select the SFI.t.i with maximum item_count as the item of tTID to be midified;

11 Return(SFI.tj.i, item_count);

12 End;

Fig:pseudo code of heuristic procedure

Table 6.

The MIC and prior weight for each transaction in D

TID Transaction |ti| MIC w

1 1,2,4,5,7 5 3 3/16

2 1,4,5,7 4 2 2/8

3 1,4,6,7,8 5 1 1/16

4 1,2,5,9 4 1 1/8

5 6,7,8 3 1 1/4

Table 7.The example

PWT

 TID w

1 2 2/8

2 5 1/4

3 1 3/16

4 4 1/8

5 3 1/16

Table 8. Experiment results for |SFI|=5

|D| CPU time(ms) |U| |U‟| #loss itemsets #modified entries

5000 326.6 439 428.6 5.4 143

10000 454.2 417 406.4 5.6 307.2

15000 701 426 415.6 5.4 513

20000 905 442 431 6 711.6

25000 1183.6 432 421.2 5.8 902.8

30000 1502 443 432.4 5.6 863.8

Now, we use the following example for illustrating the proposed algorithm FHSFI.

Example 1. Given D, SFI, as shown in Tables 2 and 4, and min_support = 40%. As shown in Table 5,

the support count for each SFI.t can be obtained from D and SFI. For example, SFI.t2, {1,4,7}, is supported by

t1, t2, and t3, so ||SFI.t2|| = 3. Table 6 lists the length, MIC, and the prior weight for each transaction in the

database. The PWT, as shown in Table 7, can be obtained by sorting Table 6 in the decreasing order by w. Then,

the first transaction, i.e., t2, in PWT is chosen to be modified. According the heuristic shown in Figure 3, the

item „1‟ in t2 are removed. Hence, ||SFI.t2|| and ||SFI.t3|| will be reduced by 1. SFI.t3 is removed from SFI

because the (||SFI.t3|| / |D|) < min_support. The process is repeated until the SFI is empty. Finally, the FHSFI
algorithm removes the item „1‟ in t2, the item „6‟ or „8‟ in t5 (select randomly), and the item „1‟ in t1. Now all

sensitive frequent itemsets in SFI have been hidden. ■

Protecting Frequent Itemsets Disclosure In Data Sets…

||Issn 2250-3005 || ||August||2013|| Page 48

IV. PERFORMANCE EVALUATION
We have performed our experiments on a notebook with 1.5G MHz processor and 512 MB memory,

under Windows XP operating system. The IBM data generator [11] is used to synthesize the databases for the

experiments. Databases with sizes 5K, 10K, 15K, 20K, 25K, and 30K are generated for the series of

experiments. The average length of transactions of each database is 10 and 50 items in the generated database.

The minimum support threshold given is 30%. The experimental results are obtained by averaging from 5

independent trials with different SFIs.

The performance of the FHSFI algorithm has been measured according to three criteria: CPU time

requirements, side effects produced, and the number of entries modified. Tables 8 and 9 present the

experimental results for |SFI|=5 and |SFI|=10, respectively.

The CPU time requirements, side-effect evaluation, and the number of entries modified for varied |D|

and |SFI| are shown in Figures 6, 7, and 8, respectively.
Table 9. Experiment results for |SFI|=10

Figure 6. CPU time requirements

Figure 7. The side-effect evaluation

Protecting Frequent Itemsets Disclosure In Data Sets…

||Issn 2250-3005 || ||August||2013|| Page 49

Figure 8. The number of entries modified

The experimental results for FHSFI can be summarized as follows:

• As shown in Figure 6, the CPU time is linear growth with the size of database and is scalable with the size

of SFI.

• The number of loss itemsets is independent of the size of database, but linear-related with the size of SFI

sets, which can be discovered in Figure 7.

• The number of the modified entries depends on the size of the database and the size of SFI. However, since
the heuristic procedures are used to determine the order of modifications, we can observe in Figure 8 that

only a small part of transactions in the database are modified. For |D|=10000, only 600 transactions are

modified for completely hiding the 10 item sets in SFI.

V. CONCLUSIONS AND FURTHER WORK
In this paper, we have presented the FHSFI algorithm in order to fast hide sensitive frequent itemsets

with limited side effects. The correlations between the sensitive itemsets and each transaction in the original

database are analyzed. A heuristic function to obtain a prior weight for each transaction is given. The order of

transactions to be modified can be efficiently decided by the weight for each transaction. This will reduce the
time to deal with the transactions whose modification is not helpful for hiding the given sensitive frequent

itemsets. In other words, the number of transactions in D that we have to deal with could also be reduced.

Our approach has achieved the following goals: 1) all SFI can be completely hidden while without

generating all frequent itemsets; 2) limited side effects are generated; 3) any minimum support thresholds are

allowed; and 4) only one database scan is required. In this research, one of our goals is hiding all SFI with

limited side effects, but our algorithm still causes some loss rule sets. We are currently considering extensions

on the algorithms to solve the problem. Another one is to apply the ideas introduced in this paper to fast hide

sensitive association rules. These issues could be studied in the future.

REFERENCES
[1] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, V. Verykios, “Disclosure limitation of sensitive rules”

Knowledge and Data Engineering Exchange, pp. 45-52, 1999.

[2] Vassilios S. Verykios, A.K. Elmagarmid, E. Bertino, Y. Saygin, and E. Dasseni, “Association Rule Hiding,” IEEE Transactions on

Knowledge and Data Engineering, vol. 16, no. 4, pp. 434-447, 2004.

[3] Shyue-Liang Wang, “Hiding sensitive predictive association rules”, Systems, Man and Cybernetics, 2005 IEEE International

Conference on Information Reuse and Integration, vol. 1, pp. 164-169, 2005.

[4] Ali Amiri, “Dare to share: Protecting sensitive knowledge with data sanitization", Decision Support Systems archive vol. 43, issue 1,

pp. 181-191, 2007.

[5] Yi-Hung Wu, Chia-Ming Chiang, and Arbee L.P. Chen, “Hiding Sensitive Association Rules with Limited Side Effects”, IEEE

Transactions on Knowledge and Data Engineering, vol. 19, issue 1, pp. 29 - 42, 2007.

Protecting Frequent Itemsets Disclosure In Data Sets…

||Issn 2250-3005 || ||August||2013|| Page 50

Authors Profile

 Mr. Shaik.Mahammad Rafi –He was born in Rajampet, Kadapa, A.P, India in 1990.He is studying
M.Tech in the department of Computer Science and Engineering at Global College of Engineering

and technology, Kadapa. He has done Bachelor's of Technology from JNTUA University in the year
2011 in Information Technology.

 Mr. M.SUMAN- He was born in Rajampet, Kadapa, A.P, India in 1985.He is Masters of Technology

in Computer Science and Engineering from JNTUH University in the year 2013 at Vathsalya Institute
of Technology & Science, Anantharam Bhongiri, Nalgonda . He has given guidance to many students

in their thesis work of M.Tech. He has also contributed in the research work on Image Processing with
his papers. He is presently working as Asst. Professor in Mekapati Rajamohan Reddy Institute of

Technology and Science ,Udayagiri,SPSR Nellore. He has done Bachelor's of Technology from JNTUH
University in the year 2006 in Computer Science & Engineering at Annamacharya Institute of

Technology & Science, Rajampet, Kadapa.

 Mr. MAJJARI SUDHAKAR- He was born in Raghunathapuram, Badvel, Kadapa, A.P, India in
1983.He is Masters of Technology in Information Technology from JNTUH University in the year
2010 at Aurora's Scientific Technological & Research Academy , Bandlaguda , Hyderabad.He
has 3 years of Teaching Experience given guidance to many students in their thesis work of M.Tech.
He has also contributed in the research work on Software Engineering with his papers. He is
presently working as Asst. Professor in Mekapati Rajamohan Reddy Institute of Technology

and Science ,Udayagiri,SPSR Nellore. He has done Bachelor's of Technology from JNTUH

University in the year 2006 in Computer Science & Engineering at Sri Venkateswara College of
Engineering & Technology,R.V.S Nagar Chittur.

 Mr. P.RAMESH- He was born in Naidupet, S.P.S.R.Nellore, A.P, India in 1989.He is studying
M.Tech in the department of Computer Science and Engineering at SIR C.V.RAMAN INSTITUTE

OF TECHNOLOGY & SCIENCE, Tadipatri, Anantapur. He has done Bachelor's of Technology

from JNTUA University in the year 2011 in Computer Science & Engineering

 Mr. P.Venkata Ramanaiah –He was born in Khajipet,Kadapa,A.P,India. He is Master of

Technology in Computer Science and Engineering at Madanapalle Institute of Technology and

Science from JNTUA University in the year 2012. He has given guidance to many students in their

thesis work of M.Tech. He has also contributed in the research work on Data Mining with his papers.

He was presently working as Assistant. Professor in Global College of Engineering and

technology,GCET, kadapa.

